Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Front Immunol ; 14: 1166725, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-2302660

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of a potentially severe respiratory disease, the coronavirus disease 2019 (COVID-19), an ongoing pandemic with limited therapeutic options. Here, we assessed the anti-coronavirus activity of synthetic RNAs mimicking specific domains in the non-coding regions of the foot-and-mouth disease virus (FMDV) genome (ncRNAs). These molecules are known to exert broad-spectrum antiviral activity in cell culture, mice and pigs effectively triggering the host innate immune response. The ncRNAs showed potent antiviral activity against SARS-CoV-2 after transfection in human intestinal Caco-2 and lung epithelium Calu-3 2B4 cells. When the in vivo efficacy of the FMDV ncRNAs was assessed in K18-hACE2 mice, administration of naked ncRNA before intranasal SARS-CoV-2 infection significantly decreased the viral load and the levels of pro-inflammatory cytokines in the lungs compared with untreated infected mice. The ncRNAs were also highly efficacious when assayed against common human HCoV-229E and porcine transmissible gastroenteritis virus (TGEV) in hepatocyte-derived Huh-7 and swine testis ST cells, respectively. These results are a proof of concept of the pan-coronavirus antiviral activity of the FMDV ncRNAs including human and animal divergent coronaviruses and potentially enhance our ability to fight future emerging variants.


Asunto(s)
COVID-19 , Virus de la Fiebre Aftosa , Masculino , Animales , Humanos , Porcinos , Ratones , Antivirales/farmacología , Virus de la Fiebre Aftosa/genética , Células CACO-2 , SARS-CoV-2/genética , ARN no Traducido
2.
Front Cell Infect Microbiol ; 12: 1002856, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2065455
3.
Front Immunol ; 13: 863831, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1924097

RESUMEN

The emergence of SARS-CoV-2 variants that escape from immune neutralization are challenging vaccines and antibodies developed to stop the COVID-19 pandemic. Thus, it is important to establish therapeutics directed toward multiple or specific SARS-CoV-2 variants. The envelope spike (S) glycoprotein of SARS-CoV-2 is the key target of neutralizing antibodies (Abs). We selected a panel of nine nanobodies (Nbs) from dromedary camels immunized with the receptor-binding domain (RBD) of the S, and engineered Nb fusions as humanized heavy chain Abs (hcAbs). Nbs and derived hcAbs bound with subnanomolar or picomolar affinities to the S and its RBD, and S-binding cross-competition clustered them in two different groups. Most of the hcAbs hindered RBD binding to its human ACE2 (hACE2) receptor, blocked cell entry of viruses pseudotyped with the S protein and neutralized SARS-CoV-2 infection in cell cultures. Four potent neutralizing hcAbs prevented the progression to lethal SARS-CoV-2 infection in hACE2-transgenic mice, demonstrating their therapeutic potential. Cryo-electron microscopy identified Nb binding epitopes in and out the receptor binding motif (RBM), and showed different ways to prevent virus binding to its cell entry receptor. The Nb binding modes were consistent with its recognition of SARS-CoV-2 RBD variants; mono and bispecific hcAbs efficiently bound all variants of concern except omicron, which emphasized the immune escape capacity of this latest variant.


Asunto(s)
COVID-19 , Anticuerpos de Dominio Único , Animales , Microscopía por Crioelectrón , Epítopos/química , Humanos , Ratones , Pandemias , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
4.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1765807

RESUMEN

Zika virus (ZIKV) is a mosquito-borne flavivirus whose infection in pregnant women is associated with a spectrum of birth defects, which are together referred as Congenital Zika Syndrome. In addition, ZIKV can also induce Guillain-Barré syndrome, which is an autoimmune disease with neurological symptoms. The recent description of the first local infections of ZIKV in the European continent together with the expansion of one of its potential vectors, the Asian tiger mosquito (Aedes albopictus), invite us to be prepared for future outbreaks of ZIKV in this geographical region. However, the antigenic similarities of ZIKV with other flaviviruses can lead to an immune cross-reactivity with other circulating flaviviruses inducing, in some cases, flavivirus-disease exacerbation by antibody-dependent enhancement (ADE) of infection, which is a major concern for ZIKV vaccine development. Until now, West Nile virus (WNV) is the main medically relevant flavivirus circulating in the Mediterranean Basin. Therefore, anticipating the potential scenario of emergency vaccination against ZIKV in areas of Europe where WNV is endemic, in this investigation, we have evaluated the cross-reactivity between WNV and our previously developed ZIKV vaccine candidate based on modified vaccinia virus Ankara (MVA) vector expressing ZIKV structural proteins (MVA-ZIKV). To this end, mice were first immunized with MVA-ZIKV, subsequently challenged with WNV, and then, the ZIKV- and WNV-specific immune responses and protection against WNV were evaluated. Our results indicate low cross-reactivity between the MVA-ZIKV vaccine candidate and WNV and absence of ADE, supporting the safety of this ZIKV vaccine candidate in areas where the circulation of WNV is endemic.

5.
ACS Med Chem Lett ; 13(1): 5-10, 2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: covidwho-1586046

RESUMEN

The COVID pandemic has evidenced how vulnerable we are to emerging infectious diseases and how short our current armamentarium is. Flavivirus, single stranded RNA viruses transmitted by arthropods, are considered a global health challenge. No drugs to treat these infections have been approved. In this Viewpoint, we analyze the advantages and disadvantages of two different, but probably also complementary, therapeutic approaches: virus-targeting antivirals and host-targeting drugs.

6.
Vaccines (Basel) ; 8(3)2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: covidwho-738846

RESUMEN

RNA viruses cause animal, human, and zoonotic diseases that affect millions of individuals, as is being exemplified by the devastating ongoing epidemic of the recently identified SARS-Cov-2 [...].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA